Predictive Intelligence Through Population Simulation

Watch opinions form, spread, and shift over time. A living simulation of how populations actually arrive at decisions.

v.01 / Open Source
extropy results netflix-password-sharing/runs/00-04/
════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════
SIMULATION RESULTS: Netflix Password Sharing Crackdown
════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════
Population: 0 agentsSeed: 789Model: gpt-5-mini
Converged at timestep 2 · 5 runs · SD 0.7pp
EXPOSURE
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Final exposure rate: 0%
Reasoning calls: 0
Average conviction: 0.00 (firm)
OUTCOMES
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Response (categorical)t=0
Remove Access44%█████████░░░░░░░░░░░
Pay Extra36%███████░░░░░░░░░░░░░
Switch13%███░░░░░░░░░░░░░░░░░
Cancel7%░░░░░░░░░░░░░░░░░░░
Sentiment (float, -1 to 1)
mean: -0.47 std: 0.31 conviction: 0.81
Stay vs Leave (aggregate)
Stay with Netflix84%░░░░░░░░░░░░░░░░░░░░
Leave Netflix16%░░░░░░░░░░░░░░░░░░░░
VALIDATION
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
SourceStayCancelError
Surveys50-65%35-52%~40pp
LLM (direct)70%15-20%~10pp
Extropy84.1%6.8%~2pp
Actual>80%<10%
01 / Applications

USE CASES

Describe a population and a scenario. Get distributional predictions segmented by any attribute.

Public Policy01

Congestion Pricing

Simulate 500 Austin commuters responding to a $15/day downtown tax. Predict mode shifts, opposition intensity, and equity impact — segmented by income, transit access, and commute distance.

Market Research02

Product Launch

Replace $50k surveys that capture stated preferences with simulated behavioral intent. Agents reason through real trade-offs instead of performing for an interviewer.

Crisis Response03

Reputation Modeling

Test crisis response strategies against synthetic customer populations. Measure defection probability by loyalty tier, social amplification likelihood, and boycott participation rates.

Pricing Strategy04

Elasticity Prediction

Model behavioral response to price changes with competing budget pressures, inertia, and social influence. See how "everyone's canceling" sentiment spreads through social clusters.

Political Strategy05

Message Testing

Test messaging on granular voter segments. Understand resonance before deployment — and how the message propagates differently through different social clusters within the same district.

Urban Planning06

Community Response

Predict community response to development proposals beyond the vocal minority. Identify persuadable segments, specific concerns driving opposition, and how resistance organizes.

02 / Architecture

HOW IT WORKS

You describe a population and a scenario. Extropy builds statistically grounded synthetic agents, connects them in a social network, and runs a multi-timestep simulation where each agent reasons, shares, and re-evaluates as opinions cascade through the network.

01

Population Synthesis

Describe who you want to simulate. An LLM discovers the attributes that actually matter for this population, researches real-world distributions with citations, and samples a statistically grounded set of synthetic agents.

02

Social Network

Agents are connected through realistic social graphs — who knows whom, who influences whom. The topology is derived from the population itself, not a generic template.

03

Simulation

Each agent reasons individually through an LLM based on their persona, memory, and what they've heard from peers. This isn't a one-shot prediction — agents re-reason as new information spreads, opinions shift, and convictions strengthen or erode across timesteps.

04

Results

Distributional predictions segmented by any attribute — broken down by income, geography, behavior, or whatever dimension matters. Track how sentiment and position distributions evolve across the full simulation timeline, not just the final state.

05

Introspection

Every agent leaves a reasoning trace. Drill into any individual to see exactly what they heard, how they weighed it, and why they landed where they did. Understand the "why" behind every data point, not just the aggregate.

Open Source

MIT licensed

CLI-First

Built for agent harnesses

Provider Agnostic

OpenAI, Anthropic, or Azure

Reproducible

Same seed, same population